Abnormal Excess Capacity of Conjugated Dicarboxylates in LithiumIon Batteries

Hyun Ho Lee, ${ }^{\dagger}$ Yuwon Park, ${ }^{\dagger}$ Kyoung-Hee Shin, ${ }^{\ddagger}$ Kyu Tae Lee, ${ }^{*}{ }^{\dagger}{ }^{\dagger}$ and Sung You Hong*, ${ }{ }^{\dagger}$
${ }^{\dagger}$ School of Energy and Chemical Engineering, KIER-UNIST Advanced Center for Energy, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea
${ }^{\dagger}$ Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea

S Supporting Information

Abstract

Lithium-ion batteries (LIBs) are considered to be key energy storage systems needed to secure reliable, sustainable, and clean energy sources. Redox-active organic compounds have been proposed as interesting candidates for electrode materials for the next-generation LIBs because of their flexible molecular design, recyclability, and low production cost. Despite wide interest, a molecular-level understanding of the electrochemical lithiations/delithiations of those materials remains rudimentary. We synthesized a set of π-conjugated dicarboxylates and discovered unprecedented excess capacities for inverse-Wurster-type nonfused aromatic compounds (dilithium terephthalate and dilithium thiophene- 2,5-dicarboxylate). Molecular structural investigations based on solid-state CP/MAS ${ }^{13}$ C NMR combined with the stable isotope labeling method and ex situ X-ray diffraction were carried out to elucidate the origin of the excess reversible capacity. Interestingly, an open-chain-type dilithium muconate did not show an analogous behavior, signifying the key role played by the cyclic moiety in the electrochemical reaction.

KEYWORDS: lithium-ion batteries, organic electrode materials, anodes, excess capacity

1. INTRODUCTION

Modern society has been depending heavily on nonrenewable fossil fuels, which have caused various kinds of damage to the environment including ocean acidification, climate change, and air pollution. In addition, the rising fuel prices and insecure petroleum imports act as global economic burdens. Some options for securing reliable, sustainable, and clean energy sources include harnessing the energy of solar radiation and wind. However, the electrical energy derived from solar radiation and wind needs to be stored, and lithium-ion batteries (LIBs) are considered to be key energy storage systems for this purpose. ${ }^{1,2}$

The design and synthesis of electrode materials for conventional LIBs have been mostly based on inorganic compounds, for example, $\mathrm{LiMO}_{2}, \mathrm{LiM}_{2} \mathrm{O}_{4}$, and LiMPO_{4} (M $=\mathrm{Co}, \mathrm{Ni}, \mathrm{Fe}, \mathrm{Mn}$, etc.) for use as cathode materials and silicon, silicon composites, graphite, and graphene for use as anode materials. Although the inorganic materials are proven to have excellent physical properties such as structural stability, redox potential, specific capacity, and electrical conductivity and typically exhibit high electrochemical performance, their structural modifications are not trivial, and in many cases, they are prepared through energy-intensive ceramic processes.

On the other hand, the organic electrode materials are typically prepared through low-cost solution phase routes. Flexible molecular design allows the exploration of diverse
redox-active molecules exhibiting unique electrochemical properties. ${ }^{3,4}$ Moreover, they are potentially recyclable and can be produced from biomass or natural compounds. For example, dilithium rhodizonate $\left(\mathrm{Li}_{2} \mathrm{C}_{6} \mathrm{O}_{6}\right)$ derived from Dglucose or myo-inositol has been applied to LIBs. ${ }^{5}$ Recently, Lee et al. reformed proton-coupled electron-transfer reactions of flavin cofactors in mitochondria into lithium insertion/ deinsertion reactions in LIBs via a biomimetic approach. ${ }^{6}$ Properly designed flavin derivatives showed an improvement in the electrochemical performance metrics including redox potential, specific capacity, and cyclability.

The first application of an organic electrode material in a battery system was proposed by Williams et al. in 1969.7 The lithium-dichloroisocyanuric acid couple was constructed for a primary battery. While redox-active conducting polymers including poly(acetylene), poly(aniline), and poly(pyrrole) have been evaluated for use in the lithium-ion rechargeable batteries, ${ }^{8}$ the practical utilization of these materials has been hampered by their low thermal stability, low crystallinity, and solubility in polar organic electrolytes. In 2009, Tarascon and co-workers reported a seminal work on conjugated dicarboxylate anodes for LIBs. ${ }^{9}$ Dilithium terephthalate $\left(\mathrm{Li}_{2} \mathrm{TP}\right)$ salt was

[^0]obtained through a simple acid-base reaction between terephthalic acid and lithium hydroxide, forming a monoclinic $P 2_{1} /$ c crystal via ionic interactions of carboxylate groups with lithium cations and π-stacking interactions between planar terephthalates. ${ }^{10} \mathrm{Li}_{2} \mathrm{TP}$ electrodes showed an outstanding electrochemical performance with stable cyclability, appropriate potential range, and enhanced thermal stability.

Conjugated organic compounds with ketone, carboxylate, anhydride, or imide functional groups have been demonstrated for LIBs ${ }^{11-18}$ as well as sodium-ion batteries. ${ }^{19-22}$ Recently, Chen et al. suggested molecular-level design strategies for organic electrode materials. Careful incorporation of heterocyclic aromatics or prearomatic 1,2-dicarbonyl moieties into the extended conjugated systems allowed the tunable redox potential, specific capacity, and rate capability needed for obtaining high-performance LIBs. ${ }^{23,24}$

According to Hünig's classification of multistage organic redox systems depicted in Scheme 1a, the reversible redox

Scheme 1. (a) General Structures of Redox-Active Organic Molecules, Adapted from Hünig's Classification and (b) a Set of Synthesized Conjugated Dicarboxylates for Excess Capacity Studies

reaction of a π-conjugated dicarboxylate, which goes through a two-stage electron-transfer process with a radical-anion intermediate, belongs to system B. ${ }^{25}$ Redox-active aromatic molecules are further categorized into Wurster and inverseWurster types (the end groups are located outside a cyclic π system and the aromaticity is found in either the reduced or oxidized form). $\mathrm{Li}_{2} \mathrm{TP}$ fits into the inverse-Wurster type/system

B category and is electrochemically reduced to a conjugated enolate tetralithium salt with two lithium insertions in the potential range of $3.0-0.7 \mathrm{~V}$ vs $\mathrm{Li} / \mathrm{Li}^{+}$. ${ }^{9}$

Herein, we report unprecedented excess capacities of nonfused aromatic compounds at low potential values below 0.7 V vs $\mathrm{Li} / \mathrm{Li}^{+}$. In order to conduct systematic comparative studies, we synthesized a family of π-conjugated dicarboxylates bearing linear and carbocyclic/heterocyclic aromatic moieties, as explained in Scheme 1b. The electrochemical lithiations/ delithiations dependent on molecular structures were examined in these systems. Additionally, the charge/discharge mechanism will be discussed with the help of solid-phase ${ }^{13} \mathrm{C}$ NMR measurements, combined with stable isotope labeling and ex situ X-ray diffraction (XRD) analysis, to illustrate the molecular crystal transformations.

2. EXPERIMENTAL SECTION

General Information. Proton $\left({ }^{1} \mathrm{H}\right)$, carbon $\left({ }^{13} \mathrm{C}\right)$, and solid-state cross-polarization magic-angle-spinning (CP/MAS) ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian 600 spectrometer. Chemical shifts are given on the δ scale in parts per million, and coupling constants are in hertz. Solid-state CP/MAS ${ }^{13} \mathrm{C}$ NMR was performed at a spinning rate of 35 kHz with a 1.6 mm Agilent FastMAS probe. Electrochemical cells were dissembled, and the collected powder was filled into a probe in an argon-filled glovebox. Thermal analysis was performed at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under a nitrogen atmosphere using a TA Instrument Q600 thermogravimetric analyzer. Powder XRD data were collected on a Rigaku D/MAX2500 V/PC powder diffractometer using $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.5405 \AA)$ from $2 \theta=15$ to 35°. The specimens for ex situ XRD were prepared in an argon-filled glovebox. Coin cells were disassembled, and active materials were covered with beryllium windows. Scanning electron microscopy (SEM) samples were examined in a Nano 230 field-emission SEM instrument. Solvents and reagents were supplied from standard suppliers. Thin-layer chromatography was carried out on Merck Kieselgel 60 F254 silicaprecoated glass plates. Plates were visualized using a UV lamp ($\lambda_{\text {max }}=$ 254 nm) and/or developed with a potassium permanganate (0.5 g) in sodium hydroxide ($1 \mathrm{M}, 100 \mathrm{~mL}$) solution.

Dilithium Terephthalate ($\mathrm{Li}_{2} \mathrm{TP}$). The title compound was prepared according to the previously described method. ${ }^{9}$ Terephthalic acid ($10.0 \mathrm{~g}, 60.2 \mathrm{mmol}$) was deprotonated by using $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(5.3$ $\mathrm{g}, 126.3 \mathrm{mmol})$ in ethanol $(200 \mathrm{~mL})$. The mixture was stirred at room temperature for 24 h . A white solid was filtered and washed with ethanol several times. The powder was annealed at $150{ }^{\circ} \mathrm{C}$ for 9 h in vacuo. Yield: $10.5 \mathrm{~g}(97 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{H}} 7.86$ (s, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{CH} \times 4) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{C}} 175.2(\mathrm{C}=\mathrm{O})$, 138.5, 128.5 ($\mathrm{Ar}-\mathrm{C}, \mathrm{Ar}-\mathrm{CH}$). IR (ATR): $1567,1388 \mathrm{~cm}^{-1}$.

Dilithium Terephthalate-2, $2^{\prime}-{ }^{13} \mathrm{C}_{2} \quad\left(\mathrm{Li}_{2} \mathrm{TP}-{ }^{13} \mathrm{C}_{2}\right)$. Terephthalic acid- $2,2^{\prime}-{ }^{13} C_{2}$ ($524 \mathrm{mg}, 3.12 \mathrm{mmol}$; Sigma-Aldrich, $99 \%{ }^{13} \mathrm{C}$) was deprotonated by using LiOH $\cdot \mathrm{H}_{2} \mathrm{O}(300 \mathrm{mg}, 7.15 \mathrm{mmol})$ in ethanol $(30 \mathrm{~mL})$. The mixture was stirred at room temperature for 24 h . A white solid was filtered and washed with ethanol several times. The powder was annealed at $150^{\circ} \mathrm{C}$ for 9 h in vacuo. Yield: 497 mg (88%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{H}} 7.86(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{CH} \times 4)$.

Dilithium trans,trans-Muconate ($\mathrm{Li}_{2} \mathrm{Mu}$). ${ }^{9}$ trans,trans-Muconic acid ($500 \mathrm{mg}, 3.51 \mathrm{mmol}$) was deprotonated by $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(324 \mathrm{mg}$, 7.73 mmol) in ethanol (30 mL). The mixture was stirred at room temperature for 22 h . A white solid was filtered and washed with ethanol several times. The powder was annealed at $150^{\circ} \mathrm{C}$ for 9 h in vacuo. Yield: $490 \mathrm{mg}(91 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{H}} 7.06-$ $7.02(\mathrm{~m}, 2 \mathrm{H}$, vinyl $\mathrm{CH} \times 2), 6.21-6.17(\mathrm{~m}, 2 \mathrm{H}$, vinyl $\mathrm{CH} \times 2) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{C}} 175.1(\mathrm{C}=\mathrm{O})$, 138.5, 132.4 (vinyl CH). IR (ATR): 1617, $1552,1382 \mathrm{~cm}^{-1}$.

Dilithium Thiophene-2,5-dicarboxylate (Li_{2} TDC). Thiophene-2,5-dicarboxylic acid ($2.00 \mathrm{~g}, 11.62 \mathrm{mmol}$) was deprotonated by $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.02 \mathrm{~g}, 24.39 \mathrm{mmol})$ in water $(20 \mathrm{~mL})$. The solution mixture was heated at $90^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was then recrystallized by the addition of ethanol and acetone to provide a white

Figure 1. Spectroscopic characterization of a set of π-conjugated dicarboxylates. (a and b) ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) and IR spectra of Li ${ }_{2} \mathrm{TP}$. (c and d) ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) and IR spectra of $\mathrm{Li}_{2} \mathrm{Mu}$. (e and f) ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) and IR spectra of $\mathrm{Li}_{2} \mathrm{TDC}$.
precipitate. The powder was annealed at $150{ }^{\circ} \mathrm{C}$ for 8 h in vacuo. Yield: $1.58 \mathrm{~g}(74 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{H}} 7.48(\mathrm{~s}, 2 \mathrm{H}$, thiophene $\mathrm{CH} \times 2) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta_{\mathrm{C}} 169.6(\mathrm{C}=\mathrm{O})$, 144.4, 130.8 (thiophene CH). IR (ATR): $1556,1376 \mathrm{~cm}^{-1}$.

5-Ethyl-2-thiophenecarboxaldehyde-2- ${ }^{13} C_{1}$ (5). To a solution of carbonyl- ${ }^{13} \mathrm{C}$-labeled N, N-dimethylformamide (DMF- ${ }^{13} \mathrm{C} ; 2.0 \mathrm{~g}$, 27.0 mmol ; carbonyl- ${ }^{13} \mathrm{C}, 99 \%$, Cambridge Isotope Laboratories, Inc.) in dichloromethane (DCM ; 5 mL) was added $\mathrm{POCl}_{3}(4.81 \mathrm{~g}, 31.4$ mmol) slowly at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h , a solution of 2ethylthiophene ($2.75 \mathrm{~g}, 24.5 \mathrm{mmol}$) in DCM (5 mL) was added dropwise over 40 min . The reaction mixture was then heated at 120 ${ }^{\circ} \mathrm{C}$ for 1.5 h and neutralized with $\mathrm{NaHCO}_{3}(8.0 \mathrm{~g})$ and cold water $(150 \mathrm{~mL})$. After extractions with $\mathrm{DCM}(150 \mathrm{~mL} \times 3)$ and diethyl ether ($150 \mathrm{~mL} \times 3$), the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Flash column chromatography (n-hexane/ethyl acetate $=5 / 1$) afforded the title compound as a yellow oil. Yield: $2.09 \mathrm{~g}(60 \%) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 9.82\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=176.6 \mathrm{~Hz},{ }^{13} \mathrm{C}(=\mathrm{O}) \mathrm{H}\right), 7.61(\mathrm{t}, 1 \mathrm{H}$, $J=3.8 \mathrm{~Hz}$, thiophene CH$), 6.92\left(\mathrm{~d}, 1 \mathrm{H}\right.$, thiophene $\left.\mathrm{CH}^{\prime}\right), 2.92(\mathrm{q}, 2 \mathrm{H}$, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

5-Formyl-2-thiophenecarboxylic Acid-2- ${ }^{13} C_{1}$ (6). A suspension of potassium permanganate ($2.01 \mathrm{~g}, 12.74 \mathrm{mmol}$) in acetone/water $(20 \mathrm{~mL}, 1: 1)$ was added to a solution of compound $5(300 \mathrm{mg}, 2.12$ $\mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$ over 30 min . The solution was stirred and heated at $65^{\circ} \mathrm{C}$ for 19 h . After concentration in vacuo, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(2.3$ $\mathrm{g})$ in $1 \mathrm{M} \mathrm{HCl}(70 \mathrm{~mL})$ was added to give a precipitate. The white precipitate was filtered off, washed with 1 M HCl , and then dried in vacuo. Yield: $169 \mathrm{mg}(47 \%) .{ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): δ_{H} 13.65 (brs, $\left.1 \mathrm{H},{ }^{13} \mathrm{COOH}\right), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}$, thiophene CH), $7.76-7.75\left(\mathrm{~m}, 1 \mathrm{H}\right.$, thiophene $\left.\mathrm{CH}^{\prime}\right), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Thiophene-2,5-carboxylic Acid- $2-{ }^{13} C_{1}$ (7). To a suspension of compound $6(527 \mathrm{mg}, 3.08 \mathrm{mmol})$ in deionized water $(20 \mathrm{~mL})$ was added a NaOCl solution ($4 \%, 17 \mathrm{~mL}$). The mixture was stirred at 55 ${ }^{\circ} \mathrm{C}$ for 30 min . After filtration, an aqueous HCl solution (35\%) was added. The white precipitate was filtered off, washed with 1 M HCl , and then dried in vacuo. Yield: $302 \mathrm{mg}(57 \%) .{ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta_{\mathrm{H}} 13.57$ (brs, $2 \mathrm{H},{ }^{13} \mathrm{COOH}, \mathrm{COOH}$), $7.70-7.69(\mathrm{~m}, 2 \mathrm{H}$, thiophene CH , thiophene CH^{\prime}).

Dilithium Thiophene-2,5-dicarboxylate-2- ${ }^{13} C_{1}\left(\mathrm{Li}_{2} \mathrm{TDC}-{ }^{13} \mathrm{C}_{1}\right)$. Compound 7 ($456 \mathrm{mg}, 2.63 \mathrm{mmol}$) was deprotonated by LiOH $\cdot \mathrm{H}_{2} \mathrm{O}$ $(262 \mathrm{mg}, 6.24 \mathrm{mmol})$ in deionized water $(25 \mathrm{~mL})$. The solution

Figure 2. Electrochemical performances of $\mathrm{Li}_{2} \mathrm{TP}$ and $\mathrm{Li}_{2} \mathrm{Mu}$ electrodes. (a and b) Voltage profile and cyclability of $\mathrm{Li}_{2} \mathrm{TP}$. (c and d) Voltage profile and cyclability of $\mathrm{Li}_{2} \mathrm{Mu}$.
mixture was heated at $90^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was then recrystallized by the addition of ethanol and acetone to provide a white precipitate. The powder was annealed at $150{ }^{\circ} \mathrm{C}$ for 9 h in vacuo. Yield: $331 \mathrm{mg}(68 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}} 7.50(\mathrm{~m}, 2 \mathrm{H}$, thiophene CH , thiophene $\left.\mathrm{CH}^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{C}}$ $169.6\left({ }^{13} \mathrm{COOH}\right), 144.4(\mathrm{~m}$, thiophene CH$), 130.8(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, thiophene $C^{\prime} \mathrm{H}$).

Electrochemical Characterization. The samples of electrochemically active materials were mixed with carbon black (Super P) and (carboxymethyl)cellulose in a 4:3:1 weight ratio. The electrochemical performance was evaluated using 2032 coin cells with a lithium metal anode and $0.8 \mathrm{M} \mathrm{LiPF}_{6}$ in an ethylene carbonate and diethyl carbonate ($1: 1, \mathrm{v} / \mathrm{v}$) electrolyte solution. Galvanostatic experiments were performed at a current density of $30 \mathrm{~mA} \mathrm{~g}{ }^{-1}$ at $20^{\circ} \mathrm{C}$. Cyclic voltammetry (CV) was performed using a WonATech WBCS3000 instrument with a scanning rate of $20 \mu \mathrm{~V} \mathrm{~s}$-1 in the voltage range of $0.0-3.0 \mathrm{~V}$ vs $\mathrm{Li} / \mathrm{Li}^{+}$. Via the van der Pauw method, ${ }^{26}$ electronic conductivities of $\mathrm{Li}_{2} \mathrm{TP}$-Super P composites were measured.

3. RESULTS AND DISCUSSION

In order to clarify the effect of the molecular structure on electrochemical lithiation, the inverse-Wurster-type dilithium terephthalate $\left(\mathrm{Li}_{2} \mathrm{TP}\right.$ or $\left.\mathrm{Li}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ and dilithium thiophene-2,5-dicarboxylate ($\mathrm{Li}_{2} \mathrm{TDC}$ or $\mathrm{Li}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{4}$) and the open-chain-type dilithium trans,trans-muconate $\left(\mathrm{Li}_{2} \mathrm{Mu}\right.$ or $\mathrm{Li}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{4}$) were prepared in acid-base chemistry (Scheme 1b).

As shown in Figure 1a, $\mathrm{Li}_{2} \mathrm{TP}$ formation was confirmed with a single peak at 7.86 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum, which was assigned to the aromatic proton. The Fourier transform infrared (FT-IR) spectra showed asymmetric ($\nu_{\text {as }}$) and
symmetric $\left(\nu_{\mathrm{s}}\right)$ carboxylate peaks at 1567 and $1388 \mathrm{~cm}^{-1}$, respectively (Figure 1b). Thermogravimetric (TG) and differential thermal (DT) analyses were performed to verify the thermal stability and hydration status. Anhydrous $\mathrm{Li}_{2} \mathrm{TP}$ decomposed above $575{ }^{\circ} \mathrm{C}$, which provided evidence of its robust thermal stability (Figure S1 in the Supporting Information, SI). The XRD peaks also revealed that $\mathrm{Li}_{2} \mathrm{TP}$ crystallized in a monoclinic cell with a space group of $P 2_{1} / c^{10}{ }^{10}$

The formation of $\mathrm{Li}_{2} \mathrm{Mu}$ and $\mathrm{Li}_{2} \mathrm{TDC}$ was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Figures 1 c ,e and S2 and S3 in the SI), by assigning vinyl or thiophene moieties with dicarboxylates. The FT-IR spectra clearly revealed removal of the dicarboxylic acid precursors after lithium hydroxide treatments and formation of the corresponding dilithium π systems (Figure $1 \mathrm{~d}, \mathrm{f})$. According to TG/DT analyses, both $\mathrm{Li}_{2} \mathrm{Mu}$ and $\mathrm{Li}_{2} \mathrm{TDC}$ were anhydrous and showed high thermal stabilities with decomposition temperatures above 415 and $605{ }^{\circ} \mathrm{C}$, respectively. As shown in the SEM images, the molecular crystals had various sizes and morphologies, mostly in the micrometer range (Figures S1-S3 in the SI).

The electrochemical investigations of $\mathrm{Li}_{2} \mathrm{TP}\left(\mathrm{Li}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ and $\mathrm{Li}_{2} \mathrm{Mu}\left(\mathrm{Li}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ were performed by galvanostatic charge/discharge in a half-cell using lithium foil as the counter electrode. Figure 2a shows the voltage profiles of the $\mathrm{Li}_{2+x} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4} / \mathrm{Li}$ cell at a current density of $30 \mathrm{~mA} \mathrm{~g}{ }^{-1}$ in the range of $0-3.0 \mathrm{~V}$. The voltage profile of $\mathrm{Li}_{2} \mathrm{TP}$ reveals a plateau located at about $0.81 \mathrm{~V} \mathrm{vs} \mathrm{Li} / \mathrm{Li}^{+}$and a sloping region between 0.8 and 0 V . The plateau at 0.81 V is ascribed to enolization of the carboxylate (two lithium redox reactions), as demonstrated

Scheme 2. Proposed Excessive Lithiation Processes of $\mathrm{Li}_{2} \mathbf{M u}$ and $\mathrm{Li}_{2} \mathbf{T P}$

by Tarascon and co-workers. ${ }^{9}$ A cyclic voltammogram of $\mathrm{Li}_{2} \mathrm{TP}$ indicates clear cathodic and anodic peaks at 0.77 and 1.01 V vs $\mathrm{Li} / \mathrm{Li}^{+}$(Figure S4 in the SI), which is consistent with the lithiation/delithiation profiles. The sloping region is indicative of lithium insertion into carbon (Super P), which delivers a reversible capacity of about $390 \mathrm{mAh} \mathrm{g}^{-1}$ (Figure S5 in the SI). Interestingly, a gradual capacity increase was observed for $\mathrm{Li}_{2+\mathrm{x}} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$ with a maximum discharge capacity of 815 mAh g^{-1} until 15 cycles, as shown in Figure 2b. However, the capacity gradually decreased to a value of $549 \mathrm{mAh} \mathrm{g}^{-1}$ after 50 cycles. Because of the insulating property of $\mathrm{Li}_{2} \mathrm{TP}$ (Table S 1 in the SI), the electrodes were prepared with a large amount of conductive carbon (Super P, 37.5\%) to enhance the electrical conductivity of $\mathrm{Li}_{2} \mathrm{TP}$. Therefore, by subtraction of the capacity delivered from Super P (maximum $293 \mathrm{mAh} \mathrm{g}{ }^{-1}=390 \mathrm{mAh}$ $\mathrm{g}^{-1} \times 37.5 \mathrm{wt} \%$ Super $\mathrm{P} / 50 \mathrm{wt} \% \mathrm{Li}_{2} \mathrm{TP}$), the actual specific capacity of $\mathrm{Li}_{2} \mathrm{TP}$ is found to be $522 \mathrm{mAh} \mathrm{g}^{-1}$ (equivalent to 3.5 lithium insertions) after 15 cycles. This surpasses the theoretical capacity ($302 \mathrm{mAh} \mathrm{g}^{-1}$) of $\mathrm{Li}_{2} \mathrm{TP}$ calculated based on the two-lithium-insertion model (Scheme 1a). Additionally, the electrochemical performance of $\mathrm{Li}_{2} \mathrm{TP}$ electrode was evaluated by galvanostatic charge/discharge in a half-cell at various current densities. When a current density is slowed down to $10 \mathrm{~mA} \mathrm{~g}^{-1}$ (Figure S 6 in the SI), the maximum discharge capacity appears earlier at the ninth cycle with an increased value (discharge: $1072 \mathrm{mAh} \mathrm{g}^{-1}$). It is noteworthy that an additional capacity of $264 \mathrm{mAh} \mathrm{g}^{-1}$ is observed at the maximum capacity point corresponding to an additional 1.75 lithium insertions. On the other hand, discharge/charge cycles at an increased current density ($300 \mathrm{~mA} \mathrm{~g}{ }^{-1}$) do not reveal the maximum capacity point as well as the excess capacity of up to 40 cycles indicating that the abnormal excess capacity is affected by kinetics (current density).

In contrast, the excess capacity and capacity fading were not observed for linear $\mathrm{Li}_{2} \mathrm{Mu}$ (Figure 2c,d), illustrating the key role played by the cyclic structure in the excessive lithiation process. During the initial cycles, a plateau corresponding to enolization of the carboxylate was observed at about 1.35 V with a narrow polarization gap of 90 mV . The actual reversible discharge capacity of $\mathrm{Li}_{2} \mathrm{Mu}$ was $241 \mathrm{mAh} \mathrm{g}{ }^{-1}$ after 50 cycles, which
corresponds to 1.4 lithium insertions. $\mathrm{Li}_{2} \mathrm{Mu}$ showed a capacity retention with a Coulombic efficiency of 99% after 50 cycles. As depicted in Scheme 2, two additional lithium insertions into enolate 1 destroy a conjugated triene moiety with the loss of the extra stabilization of the conjugated system. In addition, the degree of planarization of the linear π system will be reduced over the excessive lithiation process. The extended delocalization through the aligned neighboring π orbitals generates intramolecular planarization, which, in turn, stabilizes the π extended conjugation systems during the electrochemical processes. ${ }^{27}$ Excessive lithiation of linear (open-chain-type) $\mathrm{Li}_{2} \mathrm{Mu}$ would be a thermodynamically unfavorable process because of the loss of the extended triene structure and the disturbed intramolecular planarity. ${ }^{25}$ On the other hand, $\mathrm{Li}_{2} \mathrm{TP}$ contains a rigid aromatic core, allowing facile copolarization in the solid state, and it can hold a conjugated triene moiety even after 4 lithium insertions. Therefore, $\mathrm{Li}_{2} \mathrm{TP}$, which is an inverse-Wurster-type redox system, has molecular structural benefits over the open-chain-type $\mathrm{Li}_{2} \mathrm{Mu}$.

In order to clarify the reaction mechanism for the excess capacity of the cyclic compound, ex situ solid-state CP/MAS ${ }^{13} \mathrm{C}$ NMR of $\mathrm{Li}_{2+x} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$ was performed, and the results are shown in Figure 3. Although solution NMR typically allows a higher intrinsic sensitivity, a solid-state NMR analysis was chosen to better reflect the molecular crystal transformations in the solid-state carbon paste electrode. Besides, the artifacts associated with the solution-phase NMR measurements can also be circumvented. For example, a lithiated organic compound (organolithium) possesses highly polar $\mathrm{C}-\mathrm{Li}$ bonds because of the significant electronegativity differences between carbon and lithium, which may cause side reactions with the NMR solvents. The low sensitivity of the solid-state ${ }^{13} \mathrm{C}$ NMR (Figure S7 in the SI) was enhanced by utilizing the stable isotope-labeling method, where ${ }^{13} \mathrm{C}$-labeled dilithium terephthalate $\left(\mathrm{Li}_{2} \mathrm{TP}-{ }^{13} \mathrm{C}_{2}\right)$ was designed and synthesized.

As shown in Figure 3, a pristine $\mathrm{Li}_{2} \mathrm{TP}-{ }_{-}^{13} \mathrm{C}_{2}$ sample exhibited a resonance line at 183.5 ppm , which was assigned to two equivalent carboxylate carbons. When the $\mathrm{Li}_{2+x} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4} / \mathrm{Li}$ cell was initially discharged to 0.7 V , there were two new resonance lines at 170.2 and 160.9 ppm , which were assigned to enolate 3

Figure 3. Solid-State $\mathrm{CP} / \mathrm{MAS}{ }^{13} \mathrm{C}$ NMR analysis of the $\mathrm{Li}_{2} \mathrm{TP}-{ }^{13} \mathrm{C}_{2}$ electrode.
via two lithium insertions (Scheme 2b). The two new lines may arise because of the different intermolecular packing or isomeric (i.e., keto-enol tautomeric) states, which is analogous to the imine-enamine tautomerism, as suggested by the Choi and Coskun group. ${ }^{15}$ Yet, two phases of pristine $\mathrm{Li}_{2} \mathrm{TP}$ and 3 are observed together, indicating partial electrochemical reduction of $\mathrm{Li}_{2} \mathrm{TP}$. When $\mathrm{Li}_{2} \mathrm{TP}$ was further lithiated to 0 V , the resonance lines from 3 became apparent. When $\mathrm{Li}_{2} \mathrm{TP}$ was delithiated to 3.0 V , the $\mathrm{Li}_{2} \mathrm{TP}-{ }^{13} \mathrm{C}_{2}$ phase reemerged, illustrating the reversibility of electrochemical lithiation/ delithiation. After 15 cycles, broad signals were observed primarily in the upfield (olefinic and aliphatic) region at about 137 ppm and close to 19 ppm , which were assigned to further reduced carbocycle $4\left(\mathrm{Li}_{6} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$. This explains the excess capacity of the $\mathrm{Li}_{2} \mathrm{TP}$ electrode. During the subsequent delithiation, the carboxylate signal (179.3 ppm) was fully recovered, indicating the reversible formation of $\mathrm{Li}_{2} \mathrm{TP}$. After 50 cycles, the characteristic resonance lines from $\mathrm{Li}_{2} \mathrm{TP}_{-}{ }^{13} \mathrm{C}_{2}$ and $3\left(\mathrm{Li}_{4} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ were not detected anymore. The reduced specific capacity of the $\mathrm{Li}_{2+x} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4} / \mathrm{Li}$ cell due to decomposition of the $\mathrm{Li}_{2} \mathrm{TP}$ and intermediate 3 can cause capacity fading of the $\mathrm{Li}_{2} \mathrm{TP}$ electrode, as shown in Figure 2b. To the best of our knowledge, the excess capacity of a nonfused aromatic compound and its confirmation through solid-state NMR analysis are unprecedented, although there are a few reports on the excess capacity of multifused aromatic rings
including nanographene and 1,4,5,8-naphthalenetetracarboxylic dianhydride. ${ }^{28,29}$

Electrochemical lithiation of the $\mathrm{Li}_{2} \mathrm{TP}$ electrode was further studied using ex situ powder XRD and SEM analyses. For clarity, the XRD patterns were recorded in the $2 \theta_{\mathrm{Cu} \mathrm{K} \alpha}=15-$ 35° range. Pristine $\mathrm{Li}_{2} \mathrm{TP}$ shows the main Bragg peaks near $2 \theta_{\mathrm{Cu} K \alpha}=20.3^{\circ}, 21.0^{\circ}, 23.2^{\circ}, 24.1^{\circ}$, and 29.8°, which were indexed to the (011), (110), (002), (111), (102), and (112) planes. During the initial discharge in the potential range of $3.0-0.7 \mathrm{~V}$ (Figure 4), new Bragg peaks near $2 \theta_{\mathrm{Cu} \mathrm{K} \alpha}=23.7^{\circ}$,

Figure 4. Ex situ powder XRD analysis of the $\mathrm{Li}_{2} \mathrm{TP}$ electrode during the initial discharge.
25.2°, and 30.9° were observed, which corresponds to formation of the enolate 3 phase ${ }^{9}$ along with the pristine $\mathrm{Li}_{2} \mathrm{TP}$ phase. The two-phase ($\mathrm{Li}_{2} \mathrm{TP} /$ enolate 3) reaction was consistently found in previously mentioned voltage profiles [showing a distinctive plateau at $0.81 \mathrm{~V} \mathrm{vs} \mathrm{Li} / \mathrm{Li}^{+}$(Figure 2a)] as well as the solid-state NMR analysis (Figure 3). From 0.6 to 0 V , the new XRD pattern of enolate 3 becomes apparent with a decrease in the intensity of the major Bragg peaks of $\mathrm{Li}_{2} \mathrm{TP}$, implying the gradual conversion of $\mathrm{Li}_{2} \mathrm{TP}$ to enolate 3 $\left(\mathrm{Li}_{4} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$. When the cell was charged (Figure 5), the major Bragg peaks of $\mathrm{Li}_{2+x} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$ were superimposed on the pattern for pristine $\mathrm{Li}_{2} \mathrm{TP}$, indicating a fully reversible redox process. After the recharging from 0 to 3.0 V , the Bragg peaks corresponding to the two phases of $\mathrm{Li}_{2} \mathrm{TP}$ and enolate 3 were

Figure 5. Ex situ powder XRD analysis of the $\mathrm{Li}_{2} \mathrm{TP}$ electrode during charge/discharge cycles.
seen again. The $\mathrm{Li}_{2} \mathrm{TP}$ phase became clearer and broader after 10 cycles. However, the XRD pattern of $\mathrm{Li}_{2} \mathrm{TP}$ was not detected after 20 cycles, which is attributed to either amorphization of the molecular crystal or the gradual degradation of $\mathrm{Li}_{2} \mathrm{TP}$, as seen from the solid-state NMR analysis and voltage profiles. The morphological changes of the $\mathrm{Li}_{2} \mathrm{TP}$ electrode were examined by SEM. The initial electrode paste contained microsized (ca. $1-2 \mu \mathrm{~m}$) $\mathrm{Li}_{2} \mathrm{TP}$ particles (see Figures S1c and S8 in the SI). After 10 cycles, however, the SEM image of the paste revealed different morphological features having coral-like structures with the disappearance of microcrystalline particles. The electrochemical lithiation process of the $\mathrm{Li}_{2} \mathrm{TP}$ electrode can be more effectively carried out because of the shortened diffusion path of large crystalline $\mathrm{Li}_{2} \mathrm{TP}$ particles after 10 cycles.
Li_{2} TDC, which is a heterocyclic dicarboxylate, was compared to $\mathrm{Li}_{2} \mathrm{TP}$ to further support the effect of the cyclic structure on the excess capacity. The thiophene core was selected as a benzene analogue because it creates an aromatic 6π system (Scheme 1b). The 3p orbital of sulfur has poor overlap with the 2 p orbital of carbon, hindering the π donation of the sulfur lone-pair electrons to the aromatic core. ${ }^{30}$ Moreover, sulfur has electronegativity values similar to those of carbon $\left(\chi_{\mathrm{p}}(\mathrm{S})=\right.$ 2.58; $\chi_{\mathrm{p}}(\mathrm{C})=2.55$; Pauling electronegativity). Therefore, Li_{2} TDC was expected to possess electrochemical properties similar to those of $\mathrm{Li}_{2} \mathrm{TP}$. The electrochemical performance of
Li_{2} TDC was evaluated in a half-cell using a lithium foil as the counter electrode. Figure 6 shows the voltage profiles of

Figure 6. Voltage profile of the $\mathrm{Li}_{2} \mathrm{TDC}$ electrode at $30 \mathrm{~mA} \mathrm{~g}{ }^{-1}$ between 3.0 and 0 V .
Li_{2} TDC measured at a current density of $30 \mathrm{~mA} \mathrm{~g}^{-1}$. Similar to the observations on $\mathrm{Li}_{2} \mathrm{TP}$, an exceptionally high discharge capacity of $1143 \mathrm{mAh} \mathrm{g}^{-1}$ associated with excess capacity was observed in the case of Li_{2} TDC. After removal of the Super P contribution, the actual capacity of $\mathrm{Li}_{2} \mathrm{TDC}$ was calculated to be $850 \mathrm{mAh} \mathrm{g} \mathrm{g}^{-1}$, which is equivalent to 5.8 lithium insertions. However, Li_{2} TDC did not require multiple cycles to reach the maximum capacity value, as observed for $\mathrm{Li}_{2} \mathrm{TP}$.

For the high-resolution solid-state $\mathrm{CP} / \mathrm{MAS}{ }^{13} \mathrm{C}$ NMR studies, ${ }^{13} \mathrm{C}$-labeled dilithium thiophene-2,5-dicarboxylate $\left(\mathrm{Li}_{2} \mathrm{TDC}-{ }^{13} \mathrm{C}_{1}\right)$ was designed and synthesized through formylation and oxidation followed by an acid-base reaction, as depicted in Scheme 3. A thiophene derivative 5 was obtained

Scheme 3. Synthesis of Li_{2} TDP- ${ }^{13} \mathrm{C}_{1}{ }^{a}$

${ }^{a}\left(\right.$ a) $\mathrm{POCl}_{3}, \mathrm{DMF}^{-13} \mathrm{C}, \mathrm{DCM}, 60 \%$. (b) KMnO_{4}, acetone $/ \mathrm{H}_{2} \mathrm{O}, 47 \%$. (c) $\mathrm{NaOCl}, \mathrm{H}_{2} \mathrm{O}, 57 \%$. (d) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}, 68 \%$.
by the regioselective formylation of 2-ethylthiophene by using phosphoryl chloride and DMF- ${ }^{13} \mathrm{C}$ under the Vilsmeier condition. The benzylic carbon was oxidized to ketone by potassium permanganate to afford 6, and the intermediate was further oxidized to 7 using NaOCl . The dicarboxylic acid 7 was then finally deprotonated to furnish the corresponding lithium salt, $\mathrm{Li}_{2} \mathrm{TDC}\left(\mathrm{Li}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{4}\right)-{ }^{13} \mathrm{C}_{1}$.

When the $\mathrm{Li}_{2+x} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Li}$ cell was initially discharged to 0 V vs $\mathrm{Li} / \mathrm{Li}^{+}$, the solid-state $\mathrm{CP} / \mathrm{MAS}{ }^{13} \mathrm{C}$ NMR spectra (Figure 7) exhibited broad signals in the upfield region (δ_{c} of about $120-50 \mathrm{ppm}$ falling to olefinic and aliphatic carbons), which are assigned to the excessively lithiated compound(s). Similar patterns were observed after the second discharge cycle. When the cell was recharged to 3.0 V , the carboxylate signal reappeared, indicating the reversible formation of $\mathrm{Li}_{2} \mathrm{TDC}-{ }^{13} C_{1}$.

Figure 7. Solid-State $\mathrm{CP} / \mathrm{MAS}{ }^{13} \mathrm{C}$ NMR analysis of the Li_{2} TDC- $-{ }^{13} \mathrm{C}_{1}$ electrode.

A chemical shift variation, closely associated with the orientation of the molecular crystals, was found for the carboxylate carbon of $\mathrm{Li}_{2} \mathrm{TDC}-{ }^{13} \mathrm{C}_{1}(171.8 \mathrm{ppm}$ for the pristine sample and 188.5 ppm for the recharged sample). In order to confirm the crystallographic changes of the $\mathrm{Li}_{2+\mathrm{x}} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Li}$ cell, ex situ powder XRD measurements were performed, which showed progressive amorphization during the initial cycles (Figure S9 in the SI).

4. CONCLUSIONS

In summary, a series of π-conjugated (linear, carbocyclic, and heterocyclic) dicarboxylates were synthesized to determine the effect of the molecular structure on the excess capacity. The origin of the excess reversible capacity of nonfused aromatic compounds ($\mathrm{Li}_{2} \mathrm{TP}$ and $\mathrm{Li}_{2} \mathrm{TDC}$) was studied through the voltage profiles, solid-state $\mathrm{CP} / \mathrm{MAS}{ }^{13} \mathrm{C}$ NMR measurements and ex situ powder XRD analysis. Synthesis of ${ }^{13} \mathrm{C}$-isotopelabeled $\mathrm{Li}_{2} \mathrm{TP}$ and $\mathrm{Li}_{2} \mathrm{TDC}$ allowed the measurement of highresolution solid-state NMR spectra, which exhibited characteristic chemical shifts assigned to excessive lithiation states in a low potential range below 0.7 V vs $\mathrm{Li} / \mathrm{Li}^{+}$. Ex situ powder XRD measurements further revealed molecular crystal transformations during electrochemical lithiations/delithiations. Unlike the excess capacities of the inverse-Wurster-type carbocyclic and heterocyclic aromatic compounds $\left(\mathrm{Li}_{2} \mathrm{TP}\right.$ and $\mathrm{Li}_{2} \mathrm{TDC}$, respectively), the open-chain-type π-conjugated $\mathrm{Li}_{2} \mathrm{Mu}$ with a
linear geometry did not show excessive lithiation, implying the key role played by the cyclic core on the excess capacity of conjugated systems. The data from these experiments suggest that systematic studies assisted by synthetic organic chemistry and solid-state analyses can be a pivotal step toward revealing the molecular-structure-dependent electrochemical performance of LIBs.

ASSOCIATED CONTENT

(s) Supporting Information

${ }^{1} \mathrm{H}$ and/or ${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{Li}_{2} \mathrm{TP}, \mathrm{Li}_{2} \mathrm{Mu}, \mathrm{Li}_{2} \mathrm{TDC}$, compounds $5-7, \mathrm{Li}_{2} \mathrm{TP}-{ }^{13} \mathrm{C}_{2}$, and $\mathrm{Li}_{2} \mathrm{TDC}-{ }_{-}^{13} \mathrm{C}_{1}$, XRD patterns, SEM images, TG and DT analyses, CV and voltage profiles of $\mathrm{Li}_{2} \mathrm{TP}$, electrochemical performances of Super P, solid-state ${ }^{13} \mathrm{C}$ NMR of $\mathrm{Li}_{2} \mathrm{TP}$ without ${ }^{13} \mathrm{C}$ isotope labeling, and additional figures including Figures S1-S14. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: ktlee@unist.ac.kr.
*E-mail: syhong@unist.ac.kr.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Korea Institute of Energy and Research (KIER) (B4-2424), the National Research Foundation of Korea (NRF-2013R1A1A2060695), the MSIP (Ministry of Science, ICT \& Future Planning), Korea, under the C-ITRC (Convergence Information Technology Research Center) support program (NIPA-2013-H0301-13-1009) supervised by the NIPA (National IT Industry Promotion Agency), and by Korea Electrotechnology Research Institute (KERI) Primary research program through the National Research Council of Science \& Technology funded by the Ministry of Science, ICT and Future Planning (MSIP) (No. 14-12-N0101-69). We are grateful to Jin Wook Kim for measuring the electrical conductivities of $\mathrm{Li}_{2} \mathrm{TP}$-Super P composites and Prof. Yoon Seok Jung for helpful discussions.

REFERENCES

(1) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: a Perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.
(2) Goodenough, J. B. Electrochemical Energy Storage in a Sustainable Modern Society. Energy Environ. Sci. 2014, 7, 14-18.
(3) Liang, Y.; Tao, Z.; Chen, J. Organic Electrode Materials for Rechargeable Lithium Batteries. Adv. Energy Mater. 2012, 2, 742-769.
(4) Poizot, P.; Dolhem, F. Clean Energy New Deal for a Sustainable World: from Non-CO2 Generating Energy Sources to Greener Electrochemical Storage Devices. Energy Environ. Sci. 2011, 4, 20032019.
(5) Chen, H.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.; Tarascon, J.-M. From Biomass to a Renewable $\mathrm{Li}_{X} \mathrm{C}_{6} \mathrm{O}_{6}$ Organic Electrode for Sustainable Li-Ion Batteries. ChemSusChem 2008, 1, 348-355.
(6) Lee, M.; Hong, J.; Seo, D. H.; Nam, D. H.; Nam, K. T.; Kang, K.; Park, C. B. Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound. Angew. Chem., Int. Ed. 2013, 52, 8322-8328.
(7) Williams, D. L.; Byrne, J. J.; Driscoll, J. S. A High Energy Density Lithium/Dichloroisocyanuric Acid Battery System. J. Electrochem. Soc. 1969, 116, 2-4.
(8) Novák, P.; Müller, K.; Santhanam, K. S. V.; Haas, O. Electrochemically Active Polymers for Rechargeable Batteries. Chem. Rev. 1997, 97, 207-282.
(9) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribiere, P.; Poizot, P.; Tarascon, J. M. Conjugated Dicarboxylate Anodes for Liion Batteries. Nat. Mater. 2009, 8, 120-125.
(10) Kaduk, J. Terephthalate Salts: Salts of Monopositive Cations. Acta Crystallogr., Sect. B: Struct. Sci. 2000, 56, 474-485.
(11) Chen, H.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J.-M.; Poizot, P. Lithium Salt of Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion Battery. J. Am. Chem. Soc. 2009, 131, 8984-8988.
(12) Gottis, S.; Barrès, A.-L.; Dolhem, F.; Poizot, P. Voltage Gain in Lithiated Enolate-Based Organic Cathode Materials by Isomeric Effect. ACS Appl. Mater. Interfaces 2014, 6, 10870-10876.
(13) Walker, W.; Grugeon, S.; Mentre, O.; Laruelle, S.; Tarascon, J.M.; Wudl, F. Ethoxycarbonyl-Based Organic Electrode for Li-Batteries. J. Am. Chem. Soc. 2010, 132, 6517-6523.
(14) Wang, S.; Wang, L.; Zhang, K.; Zhu, Z.; Tao, Z.; Chen, J. Organic $\mathrm{Li}_{4} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{O}_{6}$ Nanosheets for Lithium-Ion Batteries. Nano Lett. 2013, 13, 4404-4409.
(15) Kim, D. J.; Je, S. H.; Sampath, S.; Choi, J. W.; Coskun, A. Effect of N-Substitution in Naphthalenediimides on the Electrochemical Performance of Organic Rechargeable Batteries. RSC Adv. 2012, 2, 7968-7970.
(16) Renault, S.; Brandell, D.; Gustafsson, T.; Edstrom, K. Improving the Electrochemical Performance of Organic Li-Ion Battery Electrodes. Chem. Comтии. 2013, 49, 1945-1947.
(17) Aragón, M. J.; León, B.; Pérez Vicente, C.; Tirado, J. L.; Chadwick, A. V.; Berko, A.; Beh, S.-Y. Cobalt Oxalate Nanoribbons as Negative-Electrode Material for Lithium-Ion Batteries. Chem. Mater. 2009, 21, 1834-1840.
(18) Burkhardt, S. E.; Bois, J.; Tarascon, J.-M.; Hennig, R. G.; Abruña, H. D. Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling. Chem. Mater. 2012, 25, 132-141.
(19) Park, Y.; Shin, D. S.; Woo, S. H.; Choi, N. S.; Shin, K. H.; Oh, S. M.; Lee, K. T.; Hong, S. Y. Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries. Adv. Mater. 2012, 24, 35623567.
(20) Zhao, L.; Zhao, J.; Hu, Y.-S.; Li, H.; Zhou, Z.; Armand, M.; Chen, L. Disodium Terephthalate $\left(\mathrm{Na}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery. Adv. Energy Mater. 2012, 2, 962-965.
(21) Abouimrane, A.; Weng, W.; Eltayeb, H.; Cui, Y.; Niklas, J.; Poluektov, O.; Amine, K. Sodium Insertion in Carboxylate Based Materials and Their Application in 3.6 V Full Sodium Cells. Energy Environ. Sci. 2012, 5, 9632-9638.
(22) Chihara, K.; Chujo, N.; Kitajou, A.; Okada, S. Cathode Properties of $\mathrm{Na}_{2} \mathrm{C}_{6} \mathrm{O}_{6}$ for Sodium-Ion Batteries. Electrochim. Acta 2013, 110, 240-246.
(23) Liang, Y.; Zhang, P.; Chen, J. Function-Oriented Design of Conjugated Carbonyl Compound Electrodes for High Energy Lithium Batteries. Chem. Sci. 2013, 4, 1330-1337.
(24) Liang, Y.; Zhang, P.; Yang, S.; Tao, Z.; Chen, J. Fused Heteroaromatic Organic Compounds for High-Power Electrodes of Rechargeable Lithium Batteries. Adv. Energy Mater. 2013, 3, 600-605.
(25) Deuchert, K.; Hünig, S. Multistage Organic Redox Systems-A General Structural Principle. Angew. Chem., Int. Ed. 1978, 17, 875886.
(26) van der Paw, L. J. A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape. Philips Technol. Rev. 1958, 20, 220-224.
(27) Meerholz, K.; Gregorius, H.; Müllen, K.; Heinze, J. Voltammetric Studies of Solution and Solid-State Properties of Monodisperse Oligo(p-phenylenevinylene)s. Adv. Mater. 1994, 6, 671-674.
(28) Yang, S.; Feng, X.; Zhi, L.; Cao, Q.; Maier, J.; Müllen, K. Nanographene-Constructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage. Adv. Mater. 2010, 22, 838-842.
(29) Han, X.; Qing, G.; Sun, J.; Sun, T. How Many Lithium Ions Can Be Inserted Onto Fused C_{6} Aromatic Ring Systems? Angew. Chem., Int. Ed. 2012, 51, 5147-5151.
(30) Fleming, I. Molecular Orbitals and Organic Chemical Reactions; John Wiley \& Sons, Ltd.: New York, 2009.

[^0]: Received: July 31, 2014
 Accepted: October 6, 2014
 Published: October 6, 2014

